Exercises for Quantum Mechanics 3 Set 13 (module 1)

Exercise 27: Charge conjugation and the Dirac equation

The hidden description of opposite charge in the Dirac theory
Consider the Dirac equation for spin- $1 / 2$ particles with charge q and rest mass m that are subject to a classical electromagnetic field:

$$
\begin{equation*}
(i \hbar \not \partial-m c-q \nexists(x)) \psi(x)=0 \tag{1}
\end{equation*}
$$

where $A^{\mu}(x)$ is the real electromagnetic 4 -vector potential. Use that

$$
\left(\gamma^{\mu}\right)^{*}=\left\{\begin{array}{ll}
\gamma^{\mu} & \text { if } \mu=0,1,3 \\
-\gamma^{\mu} & \text { if } \mu=2
\end{array} \quad \text { and hence } \quad \gamma^{2}\left(\gamma^{\mu}\right)^{*}=-\gamma^{\mu} \gamma^{2}\right.
$$

in the Dirac-representation to answer the following questions.
(i) Show that the charge-conjugated Dirac spinor $\psi_{C}(x) \equiv \gamma^{2} \psi^{*}(x)$ satisfies the same field equation, but with opposite charge:

$$
(i \hbar \not \supset-m c+q \nexists(x)) \psi_{C}(x)=0
$$

Note: $\psi^{*}(x)$ implies complex conjugation, not hermitian conjugation.
(ii) What happens to $\psi(x)$ if we would perform charge conjugation twice?
(iii) Assume the electromagnetic field to be static, i.e. $A^{\mu}(x)=A^{\mu}(\vec{r})$, and take

$$
\psi^{(-E)}(x)=\exp (i E t / \hbar)\left(\begin{array}{l}
\psi_{1}(\vec{r}) \\
\psi_{2}(\vec{r}) \\
\psi_{3}(\vec{r}) \\
\psi_{4}(\vec{r})
\end{array}\right) \equiv \exp (i E t / \hbar)\binom{\psi_{U}(\vec{r})}{\psi_{D}(\vec{r})}
$$

to be a stationary solution to equation (1) with negative energy $-E$.

- What happens to the energy of this solution under charge conjugation?
- How does charge conjugation affect the 2-dimensional components ψ_{U} and ψ_{D} ?
- Argue that the expectation value of the Dirac spin operator $\hat{\vec{S}}$ changes its sign under the transition from $\psi^{(-E)}(x)$ to $\psi_{C}^{(-E)}(x)$.
Hint: you may use that $\sigma^{2} \sigma^{k} \sigma^{2}=-\left(\sigma^{k}\right)^{*}$ for $k=1,2,3$.
By means of charge conjugation a negative-energy state can be turned into a positive-energy state with opposite charge and opposite spin expectation value.

Exercise 28: The electromagnetic wave equation: relativity principle and spin

Consider the free electromagnetic wave equation

$$
\square A^{\mu}(x)-\partial^{\mu}\left(\partial_{\nu} A^{\nu}(x)\right)=0
$$

where $A^{\mu}(x)$ is the real electromagnetic 4 -vector potential. The transformation characteristic of this 4 -vector potential under Lorentz transformations is defined as follows (see the generic approach outlined on p. 105 of the lecture notes):

$$
A^{\prime \mu}\left(x^{\prime}\right) \equiv G_{\nu}^{\mu}(\Lambda) A^{\nu}(x)
$$

The real invertible tensor $G^{\mu}{ }_{\nu}(\Lambda)$ denotes how the Lorentz transformations act on the 4 -dimensional space of intrinsic degrees of freedom spanned by the components of the 4 -vector potential.
(i) Demonstrate that the relativity principle applies if $G^{\mu}{ }_{\nu}(\Lambda)=\Lambda^{\mu}{ }_{\nu}$, which implies that the 4 -vector potential transforms as a contravariant vector field.
Remark: a second possible solution is $G^{\mu}{ }_{\nu}(\Lambda)=\operatorname{det}(\Lambda) \Lambda^{\mu}{ }_{\nu}$. The associated type of 4 -vector potential is referred to as a pseudovector field or axial vector field.
(ii) Perform a spatial rotation by an infinitesimal angle $\delta \alpha$ about the axis oriented along the unit vector \vec{e}_{n}. In exercise 25 it has been shown that the spatial components of the position 4 -vector x^{μ} transform as follows under this infinitesimal rotation:

$$
x^{\prime \mu}=x^{\mu}+\delta \omega_{\nu}^{\mu} x^{\nu} \quad, \quad \delta \omega_{\nu}^{\mu}=\left\{\begin{array}{cl}
0 & \text { if } \mu=0 \vee \nu=0 \\
-\delta \alpha \sum_{l=1}^{3} \epsilon^{j k l} e_{n}^{l} & \text { if } \mu=j \wedge \nu=k
\end{array}\right.
$$

with $j, k=1,2,3$ and $\epsilon^{j k l}$ as defined in equation (274) of the lecture notes.
Derive from this that the transformation characteristic of $A^{\mu}(x)$ under infinitesimal rotations is given by

$$
A^{\prime \mu}\left(x^{\prime}\right)= \begin{cases}A^{0}(x) & \text { for } \mu=0 \\ \sum_{k=1}^{3}\left(I-\frac{i}{\hbar} \delta \alpha \vec{e}_{n} \cdot \hat{\vec{S}}\right)^{j k} A^{k}(x) & \text { for } \mu=j=1,2,3\end{cases}
$$

where $\left(\hat{S}^{l}\right)^{j k} \equiv-i \hbar \epsilon^{l j k}$ acts as a 3×3 matrix on the vector potential $\vec{A}(x)$.
(iii) Finally, use the identity $\sum_{l, k=1}^{3} \epsilon^{l k j} \epsilon^{l k j^{\prime}}=2 \delta^{j j^{\prime}}$ to prove that from a quantum mechanical point of view $A^{\mu}(x)$ can be associated with the description of spin-1 particles.

