
Quantum Field Theory Exer
ises week 14

Exer
ise 22 : 
al
ulating with QED + an example of a Ward identity

One 
an learn the 
al
ulational tri
ks of the trade best by studying the QED rea
tion e
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at lowest order in perturbation theory. Suppressing spin quantum numbers, the asso
iated s-
hannel

Feynman diagram and amplitude are given by
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where we have used that the 
harge of the ele
tron and muon are equal to �jej . For determining

the (di�erential) 
ross se
tion we need to 
al
ulate jMj
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as in § 4.3.
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(b) We 
an make use of this to rewrite the expression for jMj
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in terms of tra
es in spinor spa
e:
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If we are not able to produ
e polarized beams or to measure the polarization of the �nal-

state muons, then we have to average over the initial-state polarizations and to sum over the

�nal-state polarizations:
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Apply the tra
e te
hnology worked out in exer
ise 16 to obtain
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(
) Use CM kinemati
s (see p. 63) and negle
t m

e

to simplify this to
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where E = E

CM

=2 is the energy of all four parti
les in the initial and �nal state.

Hint: the initial-state momenta are given by k

A

= k and k
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, whereas the �nal-state

momenta are given by p
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(d) Derive that the unpolarized total 
ross se
tion is given by
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where � = e

2

=(4�) is the ele
tromagneti
 �ne stru
ture 
onstant. Sket
h the behaviour of

this energy-dependent fun
tion.

(e) Atta
h an additional photon with momentum w and Minkowski index � to the ele
tron{

positron line in the above Feynman diagram. Show that the 
orresponding matrix element

M
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vanishes upon 
ontra
tion with the photon momentum w
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, i.e. w
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