Exercises for Quantum Mechanics 3 Set 1

Aim: getting acquainted with creation and annihilation operators

Exercise 1: Basis states for bosonic many-particle systems

Consider the states

$$
\begin{aligned}
& \left|n_{1}, n_{2}, \cdots\right\rangle=\frac{\left(\hat{a}_{1}^{\dagger}\right)^{n_{1}}}{\sqrt{n_{1}!}} \frac{\left(\hat{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{2}!}} \cdots\left|\Psi^{(0)}\right\rangle \equiv \prod_{j} \frac{\left(\hat{a}_{j}^{\dagger}\right)^{n_{j}}}{\sqrt{n_{j}!}}\left|\Psi^{(0)}\right\rangle \\
& \left|\Psi^{(0)}\right\rangle \equiv|0,0, \cdots\rangle, \quad \text { with } \quad\left\langle\Psi^{(0)} \mid \Psi^{(0)}\right\rangle=1 \quad \text { and } \quad \hat{a}_{j}\left|\Psi^{(0)}\right\rangle=0,
\end{aligned}
$$

where the creation and annihilation operators \hat{a}_{j}^{\dagger} and \hat{a}_{j} satisfy bosonic commutation relations

$$
\left[\hat{a}_{j}^{\dagger}, \hat{a}_{k}^{\dagger}\right]=\left[\hat{a}_{j}, \hat{a}_{k}\right]=0 \quad \text { and } \quad\left[\hat{a}_{j}, \hat{a}_{k}^{\dagger}\right]=\delta_{j k} \hat{1}
$$

Each occupation number n_{j} can take the values $0,1,2, \cdots$. It represents the number of particles in the fully specified 1-particle eigenstate belonging to the discrete eigenvalue q_{j} $(j=1,2, \cdots)$ of the complete set of 1-particle observables \hat{q}.
(i) Use equation (21) of the lecture notes to show that these commutation relations retain their form when switching to another 1-particle representation.
(ii) Prove by induction that

$$
\left[\hat{a}_{j},\left(\hat{a}_{j}^{\dagger}\right)^{n_{j}}\right]=n_{j}\left(\hat{a}_{j}^{\dagger}\right)^{n_{j}-1} .
$$

(iii) Argue that in the definition of the above-given states the order of the creation operators does not matter.
(iv) Use part (ii) to derive the following relations:

$$
\begin{aligned}
\hat{a}_{j}\left|\cdots, n_{j}, \cdots\right\rangle & =\sqrt{n_{j}}\left|\cdots, n_{j}-1, \cdots\right\rangle \\
\hat{a}_{j}^{\dagger}\left|\cdots, n_{j}, \cdots\right\rangle & =\sqrt{n_{j}+1}\left|\cdots, n_{j}+1, \cdots\right\rangle .
\end{aligned}
$$

(v) - Prove that the above-given states form an orthonormal set.

Hint: consider to this end $\left\langle n_{1}^{\prime}, n_{2}^{\prime}, \cdots \mid n_{1}, n_{2}, \cdots\right\rangle$, write the state "bra" in terms of annihilation operators, and subsequently use the expression for $\hat{a}_{j}\left|\cdots, n_{j}, \cdots\right\rangle$ given in part (iv) as well as the vacuum property $\left\langle\Psi^{(0)}\right| \hat{a}_{j}^{\dagger}=0$.

- The underlying basic principle at work is that as many \hat{a}_{j} as \hat{a}_{j}^{\dagger} operators should occur between $\left\langle\Psi^{(0)}\right|$ and $\left|\Psi^{(0)}\right\rangle$ in order for a vacuum expectation value to be non-vanishing. Why is that?

Exercise 2: Basis states for fermionic many-particle systems

Again consider the states

$$
\begin{aligned}
& \left|n_{1}, n_{2}, \cdots\right\rangle=\frac{\left(\hat{a}_{1}^{\dagger}\right)^{n_{1}}}{\sqrt{n_{1}!}} \frac{\left(\hat{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{2}!}} \cdots\left|\Psi^{(0)}\right\rangle \equiv \prod_{j} \frac{\left(\hat{a}_{j}^{\dagger}\right)^{n_{j}}}{\sqrt{n_{j}!}}\left|\Psi^{(0)}\right\rangle \\
& \left|\Psi^{(0)}\right\rangle \equiv|0,0, \cdots\rangle, \quad \text { with } \quad\left\langle\Psi^{(0)} \mid \Psi^{(0)}\right\rangle=1 \quad \text { and } \quad \hat{a}_{j}\left|\Psi^{(0)}\right\rangle=0,
\end{aligned}
$$

where the creation and annihilation operators \hat{a}_{j}^{\dagger} and \hat{a}_{j} in this case satisfy fermionic anticommutation relations

$$
\left\{\hat{a}_{j}^{\dagger}, \hat{a}_{k}^{\dagger}\right\}=\left\{\hat{a}_{j}, \hat{a}_{k}\right\}=0 \quad \text { and } \quad\left\{\hat{a}_{j}, \hat{a}_{k}^{\dagger}\right\}=\delta_{j k} \hat{1}
$$

In accordance with Pauli's exclusion principle, the occupation numbers can only take the values 0 or 1. Again n_{j} represents the number of particles in the fully specified 1-particle eigenstate belonging to the discrete eigenvalue $q_{j}(j=1,2, \cdots)$ of the complete set of 1-particle observables \hat{q}.
(i) Show that these anticommutation relations retain their form when switching to another 1-particle representation.
(ii) Argue that in the definition of the above-given states the order of the creation operators does matter now.
(iii) Derive the following relations:

$$
\begin{aligned}
\hat{a}_{j}\left|\cdots, n_{j}, \cdots\right\rangle & =\delta_{n_{j}, 1}(-1)^{N_{<j}}\left|\cdots, n_{j}-1, \cdots\right\rangle \\
\hat{a}_{j}^{\dagger}\left|\cdots, n_{j}, \cdots\right\rangle & =\delta_{n_{j}, 0}(-1)^{N_{<j}}\left|\cdots, n_{j}+1, \cdots\right\rangle
\end{aligned}
$$

with

$$
N_{<j} \equiv \sum_{k=1}^{j-1} n_{k}
$$

(iv) Prove that the above-given states form an orthonormal set.

Hint: consider to this end $\left\langle n_{1}^{\prime}, n_{2}^{\prime}, \cdots \mid n_{1}, n_{2}, \cdots\right\rangle$, write the state "bra" in terms of annihilation operators, and subsequently use the expression for $\hat{a}_{j}\left|\cdots, n_{j}, \cdots\right\rangle$ given in part (iii) as well as the vacuum property $\left\langle\Psi^{(0)}\right| \hat{a}_{j}^{\dagger}=0$.

