Exercises for Quantum Mechanics 3
Set 2

Exercise 3: Basis of IN-particle state functions in a continuous representation

Aim: linking up with the approach in the lecture course Quantum Mechanics 2

Consider an identical N-particle system with d} and a; being the creation and annihilation
operators belonging to the discrete 1-particle basis {|g;) : j =1,2,---}. As worked out
in exercises 1 and 2, the orthonormal basis states
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span the Fock space for systems consisting of an arbitrary number of such identical particles.
Since we are dealing here with a fixed number of particles, we have to restrict this set of
states to those basis states for which the occupation numbers n; add up to N. Such sets

of occupation numbers we denote compactly by {n,},

(i) Take 1y to be the unit operator in the N-particle subspace. Argue that
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Subsequently we switch to a continuous representation. To this end we consider the creation
and annihilation operators a'(k) and a(k) belonging to the continuous 1-particle basis
{|k) : k € continuous spectrum}. We will prove now that also the N-particle states
1
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form an orthonormal N-particle basis.
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(ii) First step: use the unitary basis transformation that connects both sets of creation

and annihilation operators to derive that
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(iii) Finally, prove that the following holds for both bosons and fermions:
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Hint: on the left-hand side the creation and annihilation operators can occur multiple
times. Collect these operators by bringing dﬂ . dZTN in the form (&)™ (al)" ...
Determine the correct weight factors by counting the number of ways in which the

same set of occupation numbers can be realized by the quantum numbers 71, - -, 7.



(iv) An arbitrary N-particle state function |W) can thus be represented in the k-represen-
tation by the function t(ky, -, ky) = (k1,---, ky|¥). Explain that this function is

totally symmetric for bosons and totally antisymmetric for fermions.

Exercise 4: Spatial pair interactions in Fock space
Aim: preparation for the discussion of superfluidity (see § 1.6.4)

Consider a system consisting of an arbitrary number of identical spin-s particles of mass m.
The particles experience a mutual spatial pair interaction described by the observable
U (7%1 — 7%2) This observable is diagonal in the position representation, leading to the

following total operator for spatial pair interactions:
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where ! (7) and ¢, (7) are the creation and annihilation operators in the position repre-

sentation for particles with spin component oh along the quantization axis.
(i) How do we call this type of many-particle observable?

(ii)) Challenge: what are the properties of this many-particle observable if the particles
have spin 1/2 and the potential is a 3-dimensional é-function: U(r—73) o< §(r—r3) 7

What can you tell about the total spin of the interacting particle pairs?

(iii) Show that equation (1) takes the form
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in the momentum representation, with corresponding creation and annihilation ope-
rators al (7)) and G, (p). Use the deﬁnitions and Fourier integrals given in the lecture
notes as well as the decomposition U(r) = [ dk Uk exp(ilg -7"). Moreover, in the
derivation you will also need to use the mtegral identities (A.14) and (A.15).

(iv) Which symmetry property is hidden inside this expression?

—

(v) Argue that U(k) = (27)73 [dF U(7) exp(—ik-7) will depend exclusively on k| if
U(7) is a function of the distance || only.

Remark: if the system is confined to a macroscopic enclosure, the momentum
spectrum will become discrete and the Fourier integrals will have to be replaced

by corresponding Fourier series (see App. A and Ch. 2 of the lecture notes).



