Exercises for Quantum Mechanics 3 Set 2

Exercise 3: Basis of N-particle state functions in a continuous representation

Aim: linking up with the approach in the lecture course Quantum Mechanics 2
Consider an identical N-particle system with \hat{a}_{j}^{\dagger} and \hat{a}_{j} being the creation and annihilation operators belonging to the discrete 1-particle basis $\left\{\left|q_{j}\right\rangle: j=1,2, \cdots\right\}$. As worked out in exercises 1 and 2, the orthonormal basis states

$$
\left|n_{1}, n_{2}, \cdots\right\rangle=\frac{\left(\hat{a}^{\dagger}\right)^{n_{1}}}{\sqrt{n_{1}!}} \frac{\left(\hat{a}_{2}^{\dagger}\right)^{n_{2}}}{\sqrt{n_{2}!}} \cdots\left|\Psi^{(0)}\right\rangle \quad\left(n_{1}, n_{2}, \cdots=0,1,2, \cdots\right)
$$

span the Fock space for systems consisting of an arbitrary number of such identical particles. Since we are dealing here with a fixed number of particles, we have to restrict this set of states to those basis states for which the occupation numbers n_{j} add up to N. Such sets of occupation numbers we denote compactly by $\left\{n_{j}\right\}_{N}$.
(i) Take $\hat{1}_{N}$ to be the unit operator in the N-particle subspace. Argue that

$$
\sum_{\left\{n_{j}\right\}_{N}}\left|n_{1}, n_{2}, \cdots\right\rangle\left\langle n_{1}, n_{2}, \cdots\right|=\hat{1}_{N}
$$

Subsequently we switch to a continuous representation. To this end we consider the creation and annihilation operators $\hat{a}^{\dagger}(k)$ and $\hat{a}(k)$ belonging to the continuous 1-particle basis $\{|k\rangle: k \in$ continuous spectrum $\}$. We will prove now that also the N-particle states

$$
\left\{\left|k_{1}, \cdots, k_{N}\right\rangle \equiv \frac{1}{\sqrt{N!}} \hat{a}^{\dagger}\left(k_{1}\right) \cdots \hat{a}^{\dagger}\left(k_{N}\right)\left|\Psi^{(0)}\right\rangle: \quad k_{1}, \cdots, k_{N} \in\{k\}\right\}
$$

form an orthonormal N-particle basis.
(ii) First step: use the unitary basis transformation that connects both sets of creation and annihilation operators to derive that

$$
\int \mathrm{d} k_{1} \cdots \int \mathrm{~d} k_{N}\left|k_{1}, \cdots, k_{N}\right\rangle\left\langle k_{1}, \cdots, k_{N}\right|=\sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{N}=1}^{\infty} \frac{\hat{a}_{i_{1}}^{\dagger} \cdots \hat{a}_{i_{N}}^{\dagger}\left|\Psi^{(0)}\right\rangle\left\langle\Psi^{(0)}\right| \hat{a}_{i_{N}} \cdots \hat{a}_{i_{1}}}{N!} .
$$

(iii) Finally, prove that the following holds for both bosons and fermions:

$$
\sum_{i_{1}=1}^{\infty} \cdots \sum_{i_{N}=1}^{\infty} \frac{\hat{a}_{i_{1}}^{\dagger} \cdots \hat{a}_{i_{N}}^{\dagger}\left|\Psi^{(0)}\right\rangle\left\langle\Psi^{(0)}\right| \hat{a}_{i_{N}} \cdots \hat{a}_{i_{1}}}{N!}=\sum_{\left\{n_{j}\right\}_{N}}\left|n_{1}, n_{2}, \cdots\right\rangle\left\langle n_{1}, n_{2}, \cdots\right|=\hat{1}_{N}
$$

Hint: on the left-hand side the creation and annihilation operators can occur multiple times. Collect these operators by bringing $\hat{a}_{i_{1}}^{\dagger} \cdots \hat{a}_{i_{N}}^{\dagger}$ in the form $\left(\hat{a}_{1}^{\dagger}\right)^{n_{1}}\left(\hat{a}_{2}^{\dagger}\right)^{n_{2}} \cdots$ Determine the correct weight factors by counting the number of ways in which the same set of occupation numbers can be realized by the quantum numbers i_{1}, \cdots, i_{N}.
(iv) An arbitrary N-particle state function $|\Psi\rangle$ can thus be represented in the k-representation by the function $\psi\left(k_{1}, \cdots, k_{N}\right) \equiv\left\langle k_{1}, \cdots, k_{N} \mid \Psi\right\rangle$. Explain that this function is totally symmetric for bosons and totally antisymmetric for fermions.

Exercise 4: Spatial pair interactions in Fock space

Aim: preparation for the discussion of superfluidity (see § 1.6.4)
Consider a system consisting of an arbitrary number of identical spin- s particles of mass m. The particles experience a mutual spatial pair interaction described by the observable $U\left(\hat{\vec{r}}_{1}-\hat{\vec{r}_{2}}\right)$. This observable is diagonal in the position representation, leading to the following total operator for spatial pair interactions:

$$
\begin{equation*}
\hat{U}_{\text {pair }} \equiv \frac{1}{2} \sum_{\sigma_{1}, \sigma_{2}} \int \mathrm{~d} \vec{r}_{1} \int \mathrm{~d} \vec{r}_{2} U\left(\vec{r}_{1}-\vec{r}_{2}\right) \hat{\psi}_{\sigma_{1}}^{\dagger}\left(\vec{r}_{1}\right) \hat{\psi}_{\sigma_{2}}^{\dagger}\left(\vec{r}_{2}\right) \hat{\psi}_{\sigma_{2}}\left(\vec{r}_{2}\right) \hat{\psi}_{\sigma_{1}}\left(\vec{r}_{1}\right) \tag{1}
\end{equation*}
$$

where $\hat{\psi}_{\sigma}^{\dagger}(\vec{r})$ and $\hat{\psi}_{\sigma}(\vec{r})$ are the creation and annihilation operators in the position representation for particles with spin component $\sigma \hbar$ along the quantization axis.
(i) How do we call this type of many-particle observable?
(ii) Challenge: what are the properties of this many-particle observable if the particles have spin $1 / 2$ and the potential is a 3-dimensional δ-function: $U\left(\vec{r}_{1}-\vec{r}_{2}\right) \propto \delta\left(\vec{r}_{1}-\vec{r}_{2}\right)$? What can you tell about the total spin of the interacting particle pairs?
(iii) Show that equation (1) takes the form

$$
\hat{U}_{\text {pair }}=\frac{1}{2} \sum_{\sigma_{1}, \sigma_{2}} \int \mathrm{~d} \vec{k} \int \mathrm{~d} \vec{p}_{1} \int \mathrm{~d} \vec{p}_{2} \mathcal{U}(\vec{k}) \hat{a}_{\sigma_{1}}^{\dagger}\left(\vec{p}_{1}\right) \hat{a}_{\sigma_{2}}^{\dagger}\left(\vec{p}_{2}\right) \hat{a}_{\sigma_{2}}\left(\vec{p}_{2}+\hbar \vec{k}\right) \hat{a}_{\sigma_{1}}\left(\vec{p}_{1}-\hbar \vec{k}\right)
$$

in the momentum representation, with corresponding creation and annihilation operators $\hat{a}_{\sigma}^{\dagger}(\vec{p})$ and $\hat{a}_{\sigma}(\vec{p})$. Use the definitions and Fourier integrals given in the lecture notes as well as the decomposition $U(\vec{r}) \equiv \int \mathrm{d} \vec{k} \mathcal{U}(\vec{k}) \exp (i \vec{k} \cdot \vec{r})$. Moreover, in the derivation you will also need to use the integral identities (A.14) and (A.15).
(iv) Which symmetry property is hidden inside this expression?
(v) Argue that $\mathcal{U}(\vec{k}) \equiv(2 \pi)^{-3} \int \mathrm{~d} \vec{r} U(\vec{r}) \exp (-i \vec{k} \cdot \vec{r})$ will depend exclusively on $|\vec{k}|$ if $U(\vec{r})$ is a function of the distance $|\vec{r}|$ only.

Remark: if the system is confined to a macroscopic enclosure, the momentum spectrum will become discrete and the Fourier integrals will have to be replaced by corresponding Fourier series (see App. A and Ch. 2 of the lecture notes).

