
Exercises for Quantum Mechanics 3

Set 5

Exercise 7 : Additional aspects of the example of weakly repulsive spin-0 bosons

Use §1.6.4–1.6.6 of the lecture notes while working out this exercise

Consider the Bogolyubov transformation discussed in § 1.6.5 and define the normalized

state
|0̃〉 ≡ 1

u1

exp
(

− v1
u1

â†1 â
†
2

)

|0, 0〉 =
1

u1

∞
∑

n=0

(− v1
u1

)n

|n, n〉 ,

where |n1, n2〉 are the usual occupation-number basis states in the original particle inter-

pretation (i.e. the particle interpretation prior to the Bogolyubov transformation). As can

be read off straightforwardly this state consists of coherently created particle pairs!

(i) Show that â1 |0̃〉 = − v1
u1

â†2 |0̃〉 and â2 |0̃〉 = − v1
u1

â†1 |0̃〉 .
Hint: you will again need the bosonic identity

[

â, F (â, â†)
]

= ∂F (â, â†)/∂â†.

(ii) – Use this to derive that the state |0̃〉 satisfies the identities.

ĉ1 |0̃〉 = ĉ2 |0̃〉 = 0 , ĉ†1 |0̃〉 =
1

u1

â†1 |0̃〉 and ĉ†2 |0̃〉 =
1

u1

â†2 |0̃〉

for the quasi-particle creation and annihilation operators ĉ†1,2 and ĉ1,2 of § 1.6.5.
– How would you call the state |0̃〉?

(iii) Show that 〈0̃| â†1 â1 |0̃〉 = 〈0̃| â†2 â2 |0̃〉 = v21 .

In § 1.6.6 we performed for each pair of spin-0 particles with opposite momenta ~q 6= ~0 and

−~q a Bogolyubov transformation with transformation parameters u~q and v~q in order

to switch from a description in terms of particles to a description in terms of quasi parti-

cles. These quasi particles correspond to an approximation of the actual excitations that

can occur in the weakly repulsive system. The approximation for the ground state of the

interacting system, i.e. the state without any excitations, then has the following form in

terms of the non-interacting ground state |n~0 = N, n~k 6=~0
= 0〉 :

|Ψground〉 ≈ |ΨBog〉 ≡
∏

pairs

1

u~q

exp
(

− v~q
u~q

b̂†~q b̂
†
−~q

)

|n~0 = N, n~k 6=~0
= 0〉 ,

where the product runs over all different pairs (~q ,− ~q ) 6= ~0 . The definition of the operator

b̂†
~q 6=~0

can be found on page 37 of the lecture notes.

(iv) Explain that |ΨBog〉 describes a state containing a fixed number N of spin-0 particles.

(v) – Approximate 〈ΨBog|n̂~0 |ΨBog〉 ≈ 〈ΨBog|
(

N̂−
∑

~k 6=~0

b̂†~k b̂~k
)

|ΨBog〉 in terms of N and v~q .

– What is the requirement on the parameters v~q (and thus on the interaction) in

order for the approximation method in § 1.6.4 to make sense?
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Cooper pairs in low-temperature superconductors

(background reading)

resistance

of mercury

Kamerlingh Onnes (1911)

We speak of a superconductor if the resistance of a

conductor vanishes abruptly below a certain criti-

cal temperature Tc (see figure). In that case part

of the charge carrying conduction electrons is in

a collective superfluid state, which allows these

electrons to move through the ion lattice of the

conductor without experiencing friction. The low

speed of such a superfluid flow is compensated

by the sheer numbers of the superfluid collective,

making it nevertheless possible to generate very

substantial currents.

Maxwell (1950)

Reynolds et al. (1950)

Tc/K

1/
√
Aeff

The metal-ion lattice matters: by using dif-

ferent isotopes for the lattice ions, it was demon-

strated experimentally that not only the electron

configuration but also the metal-ion lattice itself

plays a role in the phenomenon of superconduc-

tivity. It was observed that the critical temper-

ature Tc for low-temperature superconductivity

depends on the mass Aeff (in atomic mass units)

of the isotope that was used for the lattice ions.

BCS theory and Cooper pairs: the physical picture behind the previous observations

was formulated in 1957 in the so-called BCS (Bardeen–Cooper–Schrieffer ) theory.

e− e−

The Cooper-pair concept

The BCS theory states that a conduction elec-

tron that is propagating through a piece of

metal excites vibrations (waves) in the metal-

ion lattice (phonon emission). The lattice

ions are positively charged and can thus be

attracted by the negatively charged electron,

causing the lattice to become slightly de-

formed. The time scale on which such a de-

formation evolves in time is very slow (adiabatic) compared to the motions of the

much lighter electrons. Before the lattice has the time to rebound another elec-

tron can be attracted by the induced fluctuation in the charge density. This elec-

tron can subsequently absorb the quantized lattice vibration (phonon absorption).

As a result of this long-distance interaction via the lattice it is possible to induce a

net attractive interaction between pairs of electrons that would otherwise repel each other.
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Such an attractive electron pair is called a Cooper pair. It is the “fluid” of these Cooper

pairs that can flow through the lattice without friction at sufficiently low temperatures (in

analogy with the two-fluid model for superfluid 4He).

Normal conductors versus superconductors: based on this model we can instantly

understand one of the fundamental differences between normal conductors and supercon-

ductors. The more rigid the metal-ion lattice is

• the better a normal conductor becomes, in view of the larger mean free path for the

conduction electrons;

• the worse a superconductor becomes, since a diminished possibility to interact with

the lattice has a negative impact on the formation of Cooper pairs.

Exercise 8 : An attractive fermion pair above an occupied Fermi sea

This serves as an example for the Cooper instability in superconductors

Consider two identical fermions with mass m and momenta ~~k1 and ~~k2 from the spec-

trum
{~p = ~~k : kx,y,z = 0 ,± 2π/L,± 4π/L, · · · } (L ∈ IR) .

Assume all 1-particle momentum states with |~k | < kF to be occupied by other fermions

of the same type. For convenience these other fermions are left out from the discussion,

except for the effective exclusion-principle requirement |~k1,2| ≥ kF on our fermion pair.

Besides this all spin and identity aspects of the two particles are omitted in the discussion,

i.e. you may treat the system as if it was consisting of two distinguishable spin-0 particles!

In fact, the essence of the Cooper-instability phenomenon is already contained in this

highly simplified system (see below).

Suppose both particles have an attractive mutual pair interaction with matrix elements

〈~k ′
1,
~k ′

2|V̂ |~k1, ~k2〉 = −λ δb δb′ δ~k1+~k2 ,~k
′

1
+~k ′

2

,

with λ, kF and kM positive real constants and kM slightly larger than kF . The orthonor-

mal states |~k1, ~k2〉 describe particle pairs with momentum eigenvalues ~~k1 and ~~k2 . The

step functions δb and δb′ mark a narrow momentum band just above the Fermi sea for

which the pair interactions are attractive:

δb =











1 kF ≤ |~k1,2| ≤ kM

0 else

and δb′ =











1 kF ≤ |~k ′

1,2| ≤ kM

0 else

.
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The task that we set ourselves now is to look for the ground state of the 2-particle system

with Hamilton operator

Ĥ =
~̂p 2
1 + ~̂p 2

2

2m
+ V̂ .

Since the total momentum of the particle pair is conserved here, we consider for the ground

state a linear combination of orthonormal pair states with fixed total momentum ~ ~Q

and variable relative momentum ~~q :

|Ψ~Q 〉 ≡
∑

~q

δb C~Q
(~q )|~k1 = 1

2
~Q+~q , ~k2 =

1
2
~Q−~q 〉 ,

where ~q is restricted to a limited domain since kF ≤ |1
2
~Q± ~q | ≤ kM .

(i) Why does it not make sense to involve pair states outside the narrow interaction

band kF ≤ |1
2
~Q± ~q | ≤ kM while looking for the ground state?

(ii) Derive from the eigenvalue equation Ĥ |Ψ~Q
〉 = E |Ψ~Q

〉 that

C
~Q
(~q ′) =

−λ

E−~2 ~Q2/(4m)−~2~q ′ 2/m

∑

~q

δb C~Q
(~q ) for kF ≤ |1

2
~Q ± ~q ′| ≤ kM .

Hint: project on the orthonormal states 〈~k ′
1 ≡ 1

2
~Q+~q ′, ~k ′

2 ≡ 1
2
~Q−~q ′ | .

(iii) Sum this to F
~Q
(E) ≡

∑

~q ′

δb′

E−~2 ~Q2/(4m)−~2~q ′ 2/m
= − 1

λ
.

(iv) Presentation assignment: if you are not on the presentation team, you can treat this

assignment as a bonus exercise.

– Make a qualitative sketch of F
~Q
(E) and argue that the lowest energy eigenvalue

Eground has the following property:

Eground < ~
2k2

F/m = the lowest energy of the two separate particles,

irrespective of the size of λ > 0. To this end you should first explain how F
~Q
(E)

roughly behaves while E passes a total kinetic energy eigenvalue.

Consequence: there is a “bound” state, however weak the attractive interac-

tion actually may be. This non-perturbative fermionic pairing phenomenon

is referred to as the Cooper instability.

– In what sense does this differ from the customary binding that we, for instance,

observe in molecules and what is the role that the Fermi sea plays in all this?

– Explain briefly what will happen if the particles in the Fermi sea are taken into

account in the full analysis and we keep the interaction band fixed.
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