Exercises for Quantum Mechanics 3
Set 6

Exercise 9: Bogolyubov transformation for fermions

Aim: highlighting the special properties of fermionic quasi particles

Consider the fermionic version of the Bogolyubov transformation as described in §1.7.2 of
the lecture notes and let’s address a few selected aspects that will feature in the discussions

of superconductivity (module 2) and relativistic quantum mechanics (module 1).

(i) Consider the normalized quasi-particle vacuum state |0) for which ¢ ,]0) = 0.

— Show that |0) can be decomposed as follows (up to a phase factor) in terms of

the original basis states |ni,ng):
0) = u1]0,0) —v1|1,1) = (u; —viala}d)]0,0) .

Note of warning: pay due attention to relative minus signs.
— Demonstrate that for u; # 0 this can be recast in the form

0) = w exp(—ﬂaia;)\o,m .
Uy

— Determine the expectation values (0|ala;|0) and (0|adas|0).

(ii) Next we have a look at a special Bogolyubov transformation with u; =1 —v; = 0.
— What type of quasi particles are we dealing with in that case?

— Also these quasi particles are subject to the customary Pauli exclusion principle.

What does this special quasi-particle exclusion principle actually imply?

— Deduce straight from the fundamental (anti)commutation relations that this special
type of Bogolyubov transformation is possible for fermionic systems, but not for

bosonic sytems.

(iii) Consider the additive 1-particle quantity belonging to the many-particle observable

with a and b real 1-particle eigenvalues. As we can read off straightaway, in the
original particle interpretation dJ{ creates a particle with eigenvalue a and d; a
particle with eigenvalue b. Subsequently we apply again the special Bogolyubov
transformation with u; = 1 —v; = 0. What does the quantity described by A now

have to say about the quasi particles?



Exercise 10: Transition from a pure ensemble to a mixed ensemble

Aim: getting used to the concept of “integrating out degrees of freedom”

Consider a decay process in which two different spin-0 particles are produced in a pure

pair state with total momentum P. Suppose that this pure state is given by

v) = /dﬁlf<ﬁ1>aT<ﬁl)8*<13—ﬁ1)\0> with  f(p1) €C and P, j € R?,

where f(p1) # 0 if the process is allowed kinematically for the given momentum pj.

The state |0) is the vacuum state and af(p,) and bf(P—p,) are the creation operators

in the continuous momentum representation belonging to the first and second particle,

respectively. Separately these operators satisfy the usual bosonic commutation relations

for a continuous representation, i.e. for instance

(1)

(i)

(i)

~

[a(@y).a'(@)] = o —p)1  and  [b(R). b1 (77)] = (R —P)1.
Now consider an observable A that applies exclusively to the first particle.

Argue that this implies that b(p5) commutes with A as well as a(p,) and af(p;).

Take a'(py)|0) = |p1) to be the momentum eigenstate of particle 1 with eigenvalue

p1 and use this to show that
WIA) = [ 17G)P Ol AatE) ) = [d rGOP @141
Demonstrate that this can be rewritten as (U|A|¥) = Tr (Ap;), where

p = / a1 (7)) [0) 0la(7) = / a1 )12 1) (5]

describes a mixed ensemble characterized by the momentum eigenstates |pi) of parti-
cle 1 with statistical weights W (py) = |f(p1)|*>. The trace Tr, refers to the complete

state space for particle 1, which implies that we have to integrate over all momenta:
1(0) = [d5 1Ol

Integrating out (tracing over/leaving out) the degrees of freedom of particle 2
results in a mized ensemble for the QM description of particle 1. For instance
this applies to scenarios in which only particle 1 can be measured, whereas

particle 2 is virtually undetectable (as is for example the case for neutrinos).



