Exercises for Quantum Mechanics 3 Set 6

Exercise 9: Bogolyubov transformation for fermions

Aim: highlighting the special properties of fermionic quasi particles
Consider the fermionic version of the Bogolyubov transformation as described in §1.7.2 of the lecture notes and let's address a few selected aspects that will feature in the discussions of superconductivity (module 2) and relativistic quantum mechanics (module 1).
(i) Consider the normalized quasi-particle vacuum state $|\tilde{0}\rangle$ for which $\hat{c}_{1,2}|\tilde{0}\rangle \equiv 0$.

- Show that $|\tilde{0}\rangle$ can be decomposed as follows (up to a phase factor) in terms of the original basis states $\left|n_{1}, n_{2}\right\rangle$:

$$
|\tilde{0}\rangle=u_{1}|0,0\rangle-v_{1}|1,1\rangle=\left(u_{1}-v_{1} \hat{a}_{1}^{\dagger} \hat{a}_{2}^{\dagger}\right)|0,0\rangle .
$$

Note of warning: pay due attention to relative minus signs.

- Demonstrate that for $u_{1} \neq 0$ this can be recast in the form

$$
|\tilde{0}\rangle=u_{1} \exp \left(-\frac{v_{1}}{u_{1}} \hat{a}_{1}^{\dagger} \hat{a}_{2}^{\dagger}\right)|0,0\rangle .
$$

- Determine the expectation values $\langle\tilde{0}| \hat{a}_{1}^{\dagger} \hat{a}_{1}|\tilde{0}\rangle$ and $\langle\tilde{0}| \hat{a}_{2}^{\dagger} \hat{a}_{2}|\tilde{0}\rangle$.
(ii) Next we have a look at a special Bogolyubov transformation with $u_{1}=1-v_{1}=0$.
- What type of quasi particles are we dealing with in that case?
- Also these quasi particles are subject to the customary Pauli exclusion principle. What does this special quasi-particle exclusion principle actually imply?
- Deduce straight from the fundamental (anti)commutation relations that this special type of Bogolyubov transformation is possible for fermionic systems, but not for bosonic sytems.
(iii) Consider the additive 1-particle quantity belonging to the many-particle observable

$$
\hat{A}=a \hat{a}_{1}^{\dagger} \hat{a}_{1}+b \hat{a}_{2}^{\dagger} \hat{a}_{2},
$$

with a and b real 1-particle eigenvalues. As we can read off straightaway, in the original particle interpretation \hat{a}_{1}^{\dagger} creates a particle with eigenvalue a and \hat{a}_{2}^{\dagger} a particle with eigenvalue b. Subsequently we apply again the special Bogolyubov transformation with $u_{1}=1-v_{1}=0$. What does the quantity described by \hat{A} now have to say about the quasi particles?

Exercise 10: Transition from a pure ensemble to a mixed ensemble

Aim: getting used to the concept of "integrating out degrees of freedom"
Consider a decay process in which two different spin-0 particles are produced in a pure pair state with total momentum \vec{P}. Suppose that this pure state is given by

$$
|\Psi\rangle=\int \mathrm{d} \vec{p}_{1} f\left(\vec{p}_{1}\right) \hat{a}^{\dagger}\left(\vec{p}_{1}\right) \hat{b}^{\dagger}\left(\vec{P}-\vec{p}_{1}\right)|0\rangle \quad \text { with } \quad f\left(\vec{p}_{1}\right) \in \mathbb{C} \quad \text { and } \quad \vec{P}, \vec{p}_{1} \in \mathbb{R}^{3}
$$

where $f\left(\vec{p}_{1}\right) \neq 0$ if the process is allowed kinematically for the given momentum \vec{p}_{1}. The state $|0\rangle$ is the vacuum state and $\hat{a}^{\dagger}\left(\vec{p}_{1}\right)$ and $\hat{b}^{\dagger}\left(\vec{P}-\vec{p}_{1}\right)$ are the creation operators in the continuous momentum representation belonging to the first and second particle, respectively. Separately these operators satisfy the usual bosonic commutation relations for a continuous representation, i.e. for instance

$$
\left[\hat{a}\left(\vec{p}_{1}\right), \hat{a}^{\dagger}\left(\vec{p}_{1}^{\prime}\right)\right]=\delta\left(\vec{p}_{1}-\vec{p}_{1}^{\prime}\right) \hat{1} \quad \text { and } \quad\left[\hat{b}\left(\vec{p}_{2}\right), \hat{b}^{\dagger}\left(\vec{p}_{2}^{\prime}\right)\right]=\delta\left(\vec{p}_{2}-\vec{p}_{2}^{\prime}\right) \hat{1}
$$

(i) Now consider an observable \hat{A} that applies exclusively to the first particle. Argue that this implies that $\hat{b}\left(\vec{p}_{2}\right)$ commutes with \hat{A} as well as $\hat{a}\left(\vec{p}_{1}\right)$ and $\hat{a}^{\dagger}\left(\vec{p}_{1}\right)$.
(ii) Take $\hat{a}^{\dagger}\left(\vec{p}_{1}\right)|0\rangle \equiv\left|\vec{p}_{1}\right\rangle$ to be the momentum eigenstate of particle 1 with eigenvalue \vec{p}_{1} and use this to show that

$$
\langle\Psi| \hat{A}|\Psi\rangle=\int \mathrm{d} \vec{p}_{1}\left|f\left(\vec{p}_{1}\right)\right|^{2}\langle 0| \hat{a}\left(\vec{p}_{1}\right) \hat{A} \hat{a}^{\dagger}\left(\vec{p}_{1}\right)|0\rangle=\int \mathrm{d} \vec{p}_{1}\left|f\left(\vec{p}_{1}\right)\right|^{2}\left\langle\vec{p}_{1}\right| \hat{A}\left|\vec{p}_{1}\right\rangle .
$$

(iii) Demonstrate that this can be rewritten as $\langle\Psi| \hat{A}|\Psi\rangle=\operatorname{Tr}_{1}\left(\hat{A} \hat{\rho}_{1}\right)$, where

$$
\hat{\rho}_{1} \equiv \int \mathrm{~d} \vec{p}_{1}\left|f\left(\vec{p}_{1}\right)\right|^{2} \hat{a}^{\dagger}\left(\vec{p}_{1}\right)|0\rangle\langle 0| \hat{a}\left(\vec{p}_{1}\right)=\int \mathrm{d} \vec{p}_{1}\left|f\left(\vec{p}_{1}\right)\right|^{2}\left|\vec{p}_{1}\right\rangle\left\langle\vec{p}_{1}\right|
$$

describes a mixed ensemble characterized by the momentum eigenstates $\left|\vec{p}_{1}\right\rangle$ of particle 1 with statistical weights $W\left(\vec{p}_{1}\right)=\left|f\left(\vec{p}_{1}\right)\right|^{2}$. The trace Tr_{1} refers to the complete state space for particle 1 , which implies that we have to integrate over all momenta:

$$
\operatorname{Tr}_{1}(\hat{O}) \equiv \int \mathrm{d} \vec{p}_{1}\left\langle\vec{p}_{1}\right| \hat{O}\left|\vec{p}_{1}\right\rangle
$$

Integrating out (tracing over/leaving out) the degrees of freedom of particle 2 results in a mixed ensemble for the $Q M$ description of particle 1. For instance this applies to scenarios in which only particle 1 can be measured, whereas particle 2 is virtually undetectable (as is for example the case for neutrinos).

