Quantum Field Theory: Tutorial #11 Solutions

Solution 14 (cont’d):

()

Infinitesimal Lorentz transformation of a scalar field (see page 11 of the lecture notes) :

_ { y
Ba) = ¢(x) = (A0) ~ (1 - L ™)or).
where the six generators of the Lorentz group are J* =i (z#9" — xV0").
They satisfy the fundamental commutation relations
[J,u,l/7 Jpo] - [m,ual/ o xl/a,u,’ Po° — xoap] _ .(gl/pJuo _ gupjyo o gl/UJ,up + g,uUJI/p)7
which can be verified by straightforward calculation.

According to Dirac’s trick, S* = % [v#,~"] form a representation of JH :

by using {v*,7"} = 2¢*"I,, one can rewrite SH = % (yHy¥ — gV 1,) = — SYF and obtain

[SHV  SPT] = — % [YHyY — g™ Iy Py — gP 1, ] = — i [YHY,vPy?] . With the help of
VT = =T+ 297 =

= "V A+ 2079 =297y 297070 = 2977
one indeed arrives at the fundamental commutation relation

[SHV, SPP] = i(gVPSHT 4 gHP STV — gV GHP — ghT GV

— Z’(gVPSMU _ gMPSVU _ gVUSMP + gMUSVP) i

The infinitesimal Lorentz transformations of four-vectors as derived in parts (a) and (b) can

be written as

(0% [0 (07 [0 (07 7/ v\
VY = VY = (g% 4w V= [gﬁ—awﬂy(ﬂ)ﬁ]vﬁ,

with (J* )0‘5 = i(g“agg — g’g g”) the six generators of the Lorentz group for four-vectors.

Indeed one finds:

[J,ul/’ Jpo]aﬁ — (J,uu)afy (Jpo)’yﬁ _ (Jpo)afy (J,UJ/)'YB
poe v

= — (9" — g9"") (9" 9% — 959°") + (uv < po)
5

= (g7 TR — ghP IV — gUTTEP 4 ghe JVP)O
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Quantum Field Theory: Tutorial #11 Solutions

Solution 15:

The commutation relations for the generators of the Lorentz group are:

(a)

[JHV | JP7] = i (gP TR — ghP Jvo — gVT JHP 4 gho JVPY (1)

Rotations: L/ = %ejkljkl for 7=1,2,3
with J™n = %(&nké‘nl _ 5ml5nk)Jkl — %ejmnejkljkl — ¢mni[J
Boosts: K7 = J% for j=1,2,3.
Infinitesimal Lorentz transformation for the field ®: ® — & = (I — i0-L—if K )P.
We use eq. (1) to show that

* [LJ,L]C] — %[Ejmnl]mn, Ek‘T‘SJTS] — %ejmnekrs ( _ gnr gms 4 gmr gns (’I“ o S))
— i 6jmn (eanJms _ ekmSJns) — Z'EjmnekmSJns — 2(5Jk(5ns _ 5js(5kn)Jns
2
= —iJk = ik = ekl
[Lj,Kk] — % [ejmnjmn7 JOk] — %ejmn (5nkJmO _ 5kan0) = jeimk gm0 — ; gkl
(K7, K¥] = [JY,J%] = —iJik = — &MLl

* JL = L(L7 +iK7)
= [JL,78) = $(1L7, LF) £ i [K7, L¥) i [, K*] + [K7, K" ) = 0 and
L, JE) = ([, LR 0 [K9, LF) 0 [L7, K*) = (K9, K¥]) = §etL! 5 Ltk
= z'ejlili.

Hence, j+ commutes with J_ and they fulfill separately the angular momentum commutator
algebra. The finite-dimensional irreducible representations of the Lorentz group are therefore
labeled by a pair of integers or half integers (j,j_), corresponding to pairs of representations

of the rotation group with angular momentum quantum numbers j.

& & =(I—if-L—if-K)o=[I-(B+i0)-J, —(—B+if)-J_]®.
° j, = %,j, = 0 representation: J_;r = /2 and J =0 = disa 2-component field
with transformation property ® — & = (I, — i - /2 — § - 7/2)®.

e j_=0,j.= % representation: j+ =0 and J_ = 7/2 = & is a 2-component field
with transformation property ® — &' = (I —i0 -7 /2 + - 7/2)P.

Here we recognize the transformation properties of the two-dimensional left- and right-handed
Weyl spinors, which represent the two two-dimensional irreducible representations of the
Lorentz group. Both Weyl spinors can be combined to form the Dirac representation of the

Lorentz group (which is not irreducible).
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Quantum Field Theory: Tutorial #11 Solutions

Solution 16:

Basic properties of the Dirac matrices v* for u=0,1,2,3 and 7° = 7091423

1) {y*.9"} = 2¢" L4, especially (1°)? = — (1) = = (1) = = (") = (°)* = Lu,
2) {7*,7°} =0,
3) (7)1 =7"9#9° and (v°)F =+".

(a) Step 1: insert Iy = (7°)?; step 2: anticommute one of the (7°)’s to the other side of the trace,

an odd number of anticommutations provides a ‘—° sign; step 3: use the cyclic property,
ie. Tr(ABC) = Tr(CAB). All together

tep 2
=2 T(yh . yreniBeB) B2

—Tr(y 9 . Afntiaf)

1
_ — Tr(ry/l/l L. 7M2n+l,y5,y5) g _ Tr(fyl’l/l L. ,YH/Qanl) — 07

because the only complex number that is equal to its negative is 0.

Consequence: Tr(y#t ... yH2n+145) = () since it also involves an odd number of y-matrices.
(b) As in part (a), Tr(7°) = Tr(y°7%°) = —Te(y"9°7") = —Tr(1°9"°) = —Tr(s°) = 0

and Tr(y#9"7%) = £Tr(y#4"7°(77)%) = FTr(v'#9"7°y") = —Tr(3#9¥4°) = 0, where by

~" we mean any of the y-matrices that has an index that is different from p and v.

(C) Use here repeatedly ’7“17“2 — {fyul,ryﬁ@} _ r}/“?zy/‘/l — 29“1/‘/2 _[4 — 7“271'41 :
Tr(’y‘ul ,y,uz,.yﬂs . .,-YﬂQn) — 2g“1“2Tr(’y‘u3 o ,-YﬂQn) _ Tr(,-yﬂQ,-yﬂl,y/JS . ,y,uzn) B —

22Ty (13 L yH2n ) — 2gHIES Ty (2 e [ Ah2n) 4o — T (yH2Hs | 2Pt
n

= Tr(’y/“’y“Q o ,yuzn) _ Z (_1)k‘gu1ukTr(,yu2 R S _,YuQn) )
k=2

(d) Consequence: Tr(y#~") = g"Tr(1y) = 4g" as well as
Tr(yHyyPy7) = g Tr(vPy7) — g Tr(v"77) + g" Tr(v"9?) = 4(g" g — g"*g"7 + "7 g"?) .
(e) Take (uvpo) # permutation of (0123), then two indices are equal and y#~v”~P~7 can be written
as a product of two Dirac matrices (e.g. Y#y/vP7° = £4P7 if p=v). As Tr(v#4"~°) = 0,

Tr(#9"~vP4°~%) =0 if (uvpo) # permutation of (0123) .

If (uvpo) = (0123) then Tr(y#9"7P177°) = Tr(197'9%4%7°) = —iTe(y"y%) = —4i.
By permutation of these results one obtains
Tr(y#y"7Py7y°) = —4ieP,
0417243

which can be obtained by interchanging the v-matrices in order to bring them in the vy y*y

order, producing a — sign at each interchange.
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