Quantum Field Theory: Tutorial #1 Solutions

Solution 1:

(a) L =T —V with (i) kinetic term T = Zg L 2m¢2( ), as the kinetic energy of all point particles simply
adds up, and (ii) elastic term V = Zn 1 2 ks(pni1 — ¢n)?, as the potential energy of all springs add
up and |¢,+1 — ¢yl is identical to the elongation/compression of the spring, i.e., the deviation from

the equilibrium length.

d OL oL .
= %ﬁ T By mon + ks(2¢n — dn—1 — dnt1),
because
N
8¢n Z —ks(Bjr1 — ¢;)> = Z 5k3(2¢j+16n7j+1 = 2¢i0nj+1 — 2011605 + 2¢0n ;)
=1 =1
1
= §ks(2¢n - 2¢n—1 - 2¢n+1 + 2¢n) .
(c) a becomes so small that Zn L L Na Je. Thus
1 L 1 . 2 1 2
L=y [ do (Gm(vade,0)? - h(Vadlo +a.t) - Vad(e,0)? )
0

Employing the Taylor expansion ¢(z + a,t) = ¢(z,t) + ad'(z,t) + 1a’¢" (z,t) + ... one gets

L= /OL dzl, L= %mdﬂ(x,t) - %ksaz(qﬁ’(m,t))z .
The Taylor expansion is also used for the equation of motion (e.0.m.):
0 = mvade,t) +k/a(26(z,t) - 6(z — a,t) — $(a + a, 1))
- Va (més'(m, 1)+ ka(26(2,1) — 9(a,0) + a8 (3,1) — 206" (2, 1) — D, 1) — a8 (,1) — 306" (z, t)))

Va (mg'i;(x,t) - ksa2¢”(x,t)) .

In terms of 9; = 8/0t and 9, = 0/0x this becomes:

1 o 1. 2 o ksd®
L(¢, 014, 0x0) = §m(3t¢) - §ksa (0:9) and m <8t - 8z> ¢(z,t) =0.

(d) In the Euler-Lagrange equation 0y 5%~ 3(0:9) 3 s 0 a1 3 d>) 84) = 0 the last term vanishes, the first two terms
give directly
mo} p(z,t) — ksa®02¢(z,t) =0.

(e) The solutions are of the form ¢ (z + vpt) + d_(z — vpt), i.e. phonons (sound waves) moving to the left
or right with speed v, = a+/ks/m.

(f) In mechanics one has the Hamiltonian H(p,q) = p¢ — L with the momentum p = %%, in field theory

the Hamiltonian density # = 7¢ — £ with the momentum field = = dL/d¢.
Here one has 7(z,t) = m¢(z,t) and therefore

71_2

H(6,m,0:6) = md — Lmd® + kaa?(0.0)° = T+ Lmof (0.0)°
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Quantum Field Theory: Tutorial #1 Solutions

Solution 2:

The action of electrodynamics is given by S = [d*z £ = [ d*z (—}F,, F"") with the anti-symmetric rank-2
tensor (field strength tensor) F,, = d,A4, — 0, A,. Note that this tensor (and thus the action) depends
only on the derivative of the gauge field and not on the gauge field directly, i.e., 9£/9A, = 0. Furthermore,
O = 3% is the derivative w.r.t. the contravariant coordinate vector z# and is (in flat space-time) a covariant
vector. It has the properties dy = 9/0t and 9; = 9/0z* = V* for i =1,2,3.
The Euler-Lagrange equation reads therefore
oL oL oL

B“a(aaAﬁ) T 9As Do 9(0aAg) 0.

First we write Fj,, F*" = F,, F,,9"?g"? and note that

oL 1 0 1 0
= = A, —08,A F,,g""g"" — —F,, A, —8,A pp Vo
3 = 1 (g O = 0e0) Foa?*s” = 3 (g Ope =04 )
1 a B a B ny 1 po (sa B a B 1 af Ba 1 af Ba af
= —Z((Su&V—(S,,&u)F - 7F (6505 —6260) = —Z(F - F )—Z(F — FPY) = —FF (1)

where F*# = —FA* has been used. This then leads to the compact Euler-Lagrange equation
DuF*P =0. (2)

This equation is a four-vector equation. To decompose it into temporal and spatial components we note first
that

0 —-E' —E®> —-E3
E! 0 -B® B?

FoPy =
=g B o —p|
E3 —-B? B! 0
i.e., we have F° =0, F% = —F! Fi = —¢7* Bk Now we set # = 0 in eq. (2) to obtain Gauss’ law:

0=0,F*° =9,F° =9,E' =V - E,
where 7 = 1,2,3 has been summed over. Setting now 8 =j = 1,2,3 in eq. (2) gives

. . 3 . 3 i L L
0= -0, F* = —9yF% — 9;F"i = 9yF’ + 9;¢'1* B* = 8@% —(V x B).

The Maxwell equations V- B =0 and 0B /Ot + V x E =0 can be derived directly from the definitions

and the antisymmetry of ¢/*:

V.B=8,B"= _%meiijij = %eij’“(a’“f)iAj —9kiAh) =0,

StV x B = —%eiikaOFﬁ — €7k, F0T = i (%aOafAi + %BOBiAf - aiafA‘)) —0.

Alternatively this can be written as

_ 1 1
0o TP = 0a5 e Fy = S (000, Ay — DadyAu) = 0,

in terms of the totally antisymmetric tensor e*##¥  whose non-zero components are given by +1/ — 1 for
(aBuv) being an even/odd permutation of (0123). The tensor F'* is called the dual field strength tensor.

Page 2 of 2



