
Quantum Field Theory: Tutorial #1 Solutions

Solution 1:
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Employing the Taylor expansion �(x � a; t) = �(x; t)� a�
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The Taylor expansion is also used for the equation of motion (e.o.m.):
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In terms of �

t
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� �=�x this be
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(d) In the Euler-Lagrange equation �
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(e) The solutions are of the form �
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(f) In me
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Solution 2:

The a
tion of ele
trodynami
s is given by S =
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where F
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has been used. This then leads to the 
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t Euler-Lagrange equation
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This equation is a four-ve
tor equation. To de
ompose it into temporal and spatial 
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i.e., we have F
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where i = 1; 2; 3 has been summed over. Setting now � = j = 1; 2; 3 in eq. (2) gives
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in terms of the totally antisymmetri
 tensor �
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, whose non-zero 
omponents are given by +1= � 1 for

(����) being an even/odd permutation of (0123). The tensor
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