Quantum Field Theory: Tutorial #2 Solutions

Solution 2 (cont’d):

The improved electromagnetic energy-momentum tensor reads: Tw =Tw 4 O\(FH AY).

First we note that the expression for the energy-momentum tensor for a scalar field,

oL
T = 0%~ Lg",
9(0u9)
is generalized to
oL
™ = ————09"A, — L g"”
(0, A,) g
for a vector field. From last week’s part of this exercise we know that % = —F*? resulting in

T = —F*9"A, + iFaﬁFO‘ﬁ g
With the help of
ON(FIAY) = (ByF" ) A + FPA (03 A7) ZEEL 0 4 FX (9, 47)
and

—Fr9"A, + F*N(02AY) = F*(O6AY — 0"Ay) = F*F,"

one eventually obtains
. 1
TH = FIFRY + ZFaBFaBgW )

which is indeed symmetric under p <+ v. Therefore, summing over repeated indices we get
00 oxpo, L B 00 0i r0i _ L 10i poi 00 L pij i 00
& = TV =F""F, +ZFQ5F“ g :F’F’—QF ‘F™g +ZF”F”9

;g 1 P 1 .. ;s i =, 1 - =3 1 - =,
_ ElEl—EElEl+Z€”kBk6”lBl % E2—§(E2—B2):§(E2+B2)

for the energy density carried by the electromagnetic field, and

St =T% =T = FF\' + 0= FYF;' = -FYFJ = FI(~/* B*) = 7" EIB* = (E x B)'

for the momentum density (which is also known as the Poynting vector).

Solution 3:

L= (0u7)(0" 1) + (0u3) (0" ¢2) — m* (11 + $362)
(a) The equations of motion for ¢; 2(z) and ¢ »(z) are of the Klein-Gordon type:

oL oL
- = M 2 % _
O 0(0u¢1,2) 012 0 = 0.0, +m ¢, =0,
and or or
- = I3 2 -0.
% 0(0ud75) 007, 0 = 9012 +md12=0
oL oL
b) One obtains now four conjugate momentum fields © = — = .
v i " "9 " 0@
=L a0y, L0
T = 8(80¢1,2) =9 ¢172 =m, and Tpts = 8(80¢I72) =0"¢12= Tio-
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The Hamiltonian is the integral over the Hamiltonian density, i.e. H = [ d®z H, where
H= 7T1(90¢1 + 7T2(90¢2 + 7TI(90¢I + F;a()gf); — L= 277';77'1 + 277';77'2 - L.
Since the Lagrangian density £ is given by
£ =nim +mm — (Vér) - (Vo)) — (Vo) - (Ve3) — m* (161 + ¢302)
one has
H=mim +mym + (Vo) - (Vi) + (Vé2) - (Ve3) +m?(¢1¢1 + d3¢2) ,
consisting of kinetic terms, elastic terms and rest mass terms.

$1

Now we introduce the vector (doublet) notation & = <¢ ) for the two complex scalar fields and write

2
compactly £ = (8M£T)(8“5) —m?3'® . Under the continuous global U(1) transformation

-

(z) = e*®(z) and  B(z) = e @Bl (2) (e €R)
the Lagrangian is invariant:
L— (8M£T)e_i“eio‘(8“$) —m2dteivging = £

Keeping a close eye on the order of the vectors, the corresponding Noether current is given by

= 9L Agiagt_Ot __ (0*81)id + (—idh) (") =i [(3#&5*)&5 - 31(0"3)
8(8,%) 8(8,81)

jU

using the first-order variations! A® =id and A®T = —i®'. The corresponding Noether charge is

2
fd3a:j0 = z'/d3a: [(BOi;T)i; — 5*(605)] U 7 Z/d% [Tabo — s
a=1

Under the continuous global SU(2) transformation

k_k —

d(z) — €7 B(z) and df(z) = @f (x)e 7 (af €eR for k=1,2,3)

the Lagrangian is also invariant, which can be shown by an analogous calculation as above. Here the

hermitian Pauli matrices 01:23 are the generators of SU(2). With
(Ad)F =ig*®  and  (ASH)F = —idfot,
the corresponding three conserved Noether currents and charges read
(") = (8" dN)ic"® — idl ok (0 B),

QF = fd3a;(j0)k Zifd% [(805T)o—’“<§— iTak(ao‘f’)] = 22: fd% [ma(0®)ab b6 — ¢ (") ap 5] -

a,b=1

1By definition one has & = & + aAd + O(a?). With ei® = 1 +ia + O(a?) the given expressions for A® and AdT follow.
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