Quantum Field Theory: Tutorial #5 Solutions

Solution 5:

Free complex Klein-Gordon field: £ = (9,¢*) (0 ¢) — m?¢*¢.

(a) Where are the poles of the Feynman propagator? Im po
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With € — 0" also § = 5o 07, and the poles in the complex pg-plane coincide with the
p
prescription on page 26 of the lecture notes, which yields the Feynman propagator after the

integration is performed.

(b) The field operator ¢(z) contains the operators a; and ZA); D ()= -y o IS;; such that
(O T () d)[0) = (0]... aag + ... azbl + ... blag + ... bLBL|0)

The first, third and fourth terms vanish directly by either acting with a; to the right or with
13; to the left on the vacuum. In the second term one has first to commute the operators,

which does not give any extra term since [a;, b;] = 0. The fact that this amplitude vanishes
can also be understood physics-wise. First an antiparticle is being created out of the vacuum
at spacetime point y (or ), whereas subsequently a particle is being annihilated at spacetime

point z (or y). Obviously this cannot correspond to the propagation of an actual (anti)particle.

For (0| T(cZST(x)qAST (y)) |0) the same arguments apply, the only difference being the appearence

of the operators &; and Bﬁ. This just interchanges the role of particles and antiparticles.

(c¢) Using that [fI, &ﬁ]e_ip'z = —wyaye PT = —id, (&ﬁe_ip"”) and [I{I, d;]eip':” = wﬁd;eip'm =

— 109 (d; e'r® ) , we can write an infinitesimal time translation of ¢2(a:) as being generated by H:

b(x) + At Byp(x) = d(x) +iAt [FI, QAﬁ(a?)] ~ A o) e—iHA (At € R infinitesimal) .

Solution 6:

Consider the time-ordered exponential of the operator A(t) for 7 < ¢:

A ¢ . t R t1 .
Et,1) = 1+/ dt, A(t1)+/ dty A(tl)/ dtz A(t2) + ...
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(a)

E(t, 7) satisfies the boundary condition E(7,7) = 1 because Ir dtiA(ty) = 0 (zero integration
measure). As % f: dtiA(t) = A(t) (differentiating the upper limit of an integral gives the
integrand evaluated at the upper limit), E(t, 7) fulfills the linear differential equation

d f2

& B(t,7) = 0+ A() + A() / by Alta) + A() / ity Alts) [Cats ) + .. = A7),

oo t t
To Prove: B(t,7) = 3 1,/dt1 .../dtnT(A(tl)...A(tn)).
mn.
TLZO T T

The decisive step in the proof:

2 f: dty ... th dtr, T(fl(tl) . A(tn)) leads to m terms, such that the ith term has ¢ — 1 terms
to the left and n — i terms to the right of the operator A(t). Now, ¢ is the latest time, and
the time ordering operator implies that the operator fl( t) has to be pulled to the leftmost
position. The above derivative results in nA(t f dty .. f: dtp—1 T(/Al(tl) .. .A(tn_l)) and

therefore one has

9 ) 1 t t R A
3757; n!/Tdtl .../Tdt T(A(t1) ... A(tn))

D>>

dtl. dtn L\ T(A(ty) ..

(n 1))

= A(t) nz:; % /:dtl .../:dtnT(A(tl)...A(tn)).

We have just seen that the time-ordered operator

Z /dtl./dtT L At))

satisfies the same linear differential equation as E(t, 7). Since this time-ordered operator also
satisfies the same boundary condition as £ (t,7), i.e. yielding 1 at t = 7, it must indeed be
identical to E(t, 7).

If the operators A(t) commute for all times (the operators are then like ordinary numbers)

the T-ordering is clearly not needed, because all orderings are then equivalent:

By =Y % ( / tdt’fl(t’)>n.

n=0

One obtains then the usual exponential function
E(t,7) = els dt/A(t/),

with the calculational rules as known from basic calculus.
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