
Quantum Field Theory: Tutorial #6 Solutions

Solution 7:

(a) A Lagrangian typially onsists of kineti and mass terms (ontaining two �elds) as well as

interation terms (ontaining three or more �elds). Thus, in the salar Yukawa theory the

interation term is given by
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(b) First we expand the exponential:
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At order O(g
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h0jT

�

^

 

y

I

(x

1

)

^

�

I

(x

2

)

^

 

I

(x

3

)

^

1

�

j0i = 0 ;

sine aording to Wik's theorem only a fully ontrated set of �elds an give rise to a

nonzero vauum expetation value. Three �elds an simply not be fully ontrated as eah

Wik ontration involves a pair of �elds.

At order O(g) one has:
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Applying Wik's theorem one obtains only then a non-vanishing result if
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Every Wik ontration gives a Feynman propagator, and therefore one obtains at order O(g):
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using the propagator onventions
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This has the struture

vertex (�ig
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x) �  -propagator � �-propagator �  -propagator.

() The respetive Feynman diagrams are:
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The arrows in these Feynman diagrams represent the diretion of partile-number ow. The

operators
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(x) orrespond to antipartile reation or partile annihilation at

the spaetime points x
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and x: hene, the arrows ow into these external/internal points of

the Feynman diagrams. The operators
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antipartile annihilation at the spaetime points x
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and x: hene, the arrows ow out of these

external/internal points of the Feynman diagrams.

(d) Coordinate-spae Feynman rules for Green's funtions in the salar Yukawa theory :

1. For eah �-propagator
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2. For eah vertex
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No symmetry fators are needed beause all �elds involved in the interation are di�erent.

(e) Translation of these Feynman rules to momentum spae :
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2. For eah vertex insert �ig.

3. For eah external point
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4. Impose energy-momentum onservation at eah vertex by �xing one of the momenta.

5. Integrate over eah undetermined loop momentum p
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Solution 8:

Every interation involves a pair
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an outowing line. Sine  -partiles and
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 -antipartiles have opposite partile number (whih

is a harge-like quantum number),
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spaetime point x, whereas
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beause it has no  -partile number, the \total harge" = \number of  -partiles � number of
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 -antipartiles" is onserved at eah interation vertex. Furthermore, a propagator

h0jT

�

^

 

I

(x)

^

 

y

I

(y)

�

j0i = h0jT

�

^

 

y

I

(y)

^

 

I

(x)

�

j0i

reates the harge assoiated with a  -partile at spaetime point y and annihilates it at spaetime

point x. So, the  -harge ows ontinuously from y to x in suh a propagator, as indiated by

the arrow onvention. This would not be the ase for the propagators h0jT
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partile-number onservation. However, we have seen in exerise 5(b) that these propagators are

zero and hene forbidden.

In onlusion: partile-number onservation auses the arrows in a Feynman diagram

to link up and form a ontinuous ow.
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