Quantum Field Theory: Tutorial #7 Solutions

Solution 9:

(a)

In order to calculate decay and scattering amplitudes (f|S]i) = iM(27)*6™®) (p; — py) one
needs in addition to the Feynman rules derived in exercise 7 also the contractions of field

operators with external lines.

‘In coordinate space ‘: the field operator 1,31(:0) can be contracted with an initial ¢-particle

state on the right providing a factor e **%%  since

— d3q 1 Ciwaz0LiGE 3 7 —iky -
¢I($)|k¢>0:/wﬁe e bq*\/2‘*’12¢b,2¢|0>:e " 0)

Analogously, a contraction 0<ﬁd-,|1ﬁ1(:v) of the field operator @1(:0) with a final ¢-particle state

on the left provides a factor e’P¥"?, a contraction ﬂ (:v)|fc¢>0 of the field operator ﬂ (z) with

an initial ¢-particle state on the right provides a factor e **%¢ and a contraction g(ﬁ,pm;' (z)

of the field operator @ﬁf (z) with a final t/-particle state on the left provides a factor e?¥2.

To mark this in Feynman diagrams an arrow will be drawn on ¢ /v-lines, representing the di-
rection of particle number flow: t-particles flow along the arrow, i-particles = 1-antiparticles

against the arrow.

‘In momentum space ‘ : these extra Feynman rules all provide a trivial factor 1.

The lowest-order amplitude for the decay process ¢(ka) — ¥(p1)1(p2) is given by the ele-
mentary vertex, hence iMLO(qﬁ — Pp) = —ig.

In all three 2 — 2 scattering cases there are two Feynman diagrams possible at lowest or-

der. With the help of energy-momentum conservation, the lowest-order scattering amplitude

iM"((ka)y(kp) = (p1)9(p2)) reads

b1 D2 D2 P1
+ = i2( ! + ! )
T T kA —p)? —m21ie | (ka—po)?—mPtie/)

ks kg ka kg

The lowest-order scattering amplitude iMLO(¢(kA)1Z(kB) — @(p1)¢(p2)) is given by

. b1 p2 - . b2 pr
n A _i? ( 1 n 1 )
m m T T\ a2 - MTrde  (ka—p2)2 - MPtie)
kA kB kA kB

Note that the incoming momentum kp of the antiparticle is defined in the opposite direction

of the arrow! This is typical for the arrow convention for antiparticles.
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The lowest-order scattering amplitude iMLO('I/J(kA)T,Z(kB) — 9(p1)(p2)) is given by

p1
\/pz p1 pz/ B . .
E * - Y ((kA+kB)2—m2+i6+(kA—p1)2—m2+ie)'
A SR
ka

This amplitude can be obtained from the first one by means of crossing, i.e. changing the mo-

menta according to kp,ps — —p2, —kp in order to switch from particles to antiparticles in

the opposite reaction state.

(d) The lowest-order scattering amplitude iMLO(¢(kA)¢(kB) — ¢(p1)¢(p2)) vanishes, since an
initial state with particle number 2 cannot scatter into a final state with particle number 0
(cf. exercise 8). In the Feynman diagrams this manifests itself by the absence of a consistent

(continuous) flow for the particle number in this particular process.

Solution 11:

(a) Consider the decay in the rest frame of the decaying particle: k', = (m,0), pi = (E1,7)
and ph = (B2, —p). First, note that By = E> = \/M?+ 5 2 = m/2 and therefore [p'| = p =
1v/m2 —4M? >0, which implies the condition m > 2M.

According to exercise 9(b) the matrix element is iMLO(qb — Y3p) = —ig. Employing page 64
of the lecture notes with Ec s replaced by m gives the decay width

1 2 2
Ty iy = —92/dH2 T /dQ =9\ J1—4M%m?,

2m 1672m 167mm
where [dQ = 47 has been used.

(b) Consider the lowest-order scattering process (k4)¥(kg) — ¢(p1)¢(p2) in the CM frame:
k,ljl = (EA,O,Oak)) k% = (EB,O,Oa _k) ) pllt = (Elaﬁ) and pg = (E2a _ﬁ)a

1
with Eq=FEp=FE{=Fy=—-FEcy = \/g

1
2 2
This implies:

1

5\/3—4M220 = Ecm=+/s>2M,

1
|ﬁ|:p:§m20 = Ecy =+/5 > 2m,

- 1
and kA-ﬁ:kpcos@:Z\/S—KLM2 Vs — 4m? cosf.
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According to exercise 9(c) the matrix element iMLO(g[J(kA)@Z(kB) — ¢(p1)¢(p2)) reads

b1 p2 - . D2 p1
+ . 9 ( 1 n 1 )
= —1g )
/—»—}\\ /—»—}\\ (ka — p1)2 — M2 (kg — p2)? — M?2
ka kg ka kp

where the diagram on the left is the ¢-channel diagram and the one on the right the u-channel.
Bearing in mind that ¢ = (k4 —p1)? = m?2+ M2 - g (1— V1 —4M2/s+/1 —4m?2/s cos 9) and

u=(kg—p2)? = m2—|—M2—%(1+\/1 —4M?/s\/1 —4m?2/s cos9), the matrix element and

therefore also the differential cross section are symmetric under cos @ — — cos § = cos(m —6).

Furthermore, note that the usual infinitesimal imaginary parts have been skipped in the
above-given propagators. Since t,u < M?, these propagators can never become on-shell and

as such the infinitesimal imaginary parts are obsolete.
The lowest order differential cross section then reads

do""  p.65 V1—4m?/s

dQ 6472s/1 — 4M?2 /s

M (k)0 (k) = $lor)o(p2)) || O(V5—2M) O(v5—2m)

Consider the lowest-order scattering process ¥(ka)¥ (k) — ¢(p1)Y(p2) in the CM frame:

kfjl = (EA,0,0,k), k% = (EB,0,0,—k), pit = (Elaﬁ) and pg = (E27_ﬁ)7

1 1
Wlth EA:EB:El:EQ:EECM:_\/g-

[\

This implies:

Vs—4M2 >0 = Eoy=+5s > 2M,

. 1 )
and ka-p :kpcos921(3—4M )cos 6.

Therefore we obtain: s > 4M?, t = (kg —p1)? = — % (1 —4M?/s)(1 —cosf) < 0

and u= (kg —p2)?=—= (1 —4M?/s)(14cosh) < 0.

_s
2
According to exercise 9(c) the matrix element iMLO(g[J(kA)@Z(kB) — ¥(p1)Y(p2)) reads

b1
\/pz 1 pz/ y . .
E * \ - Y (s—m2+ie+t—m2)’
* ks ka Kk
/kA\\ 5

where the diagram on the left is the s-channel diagram and the one on the right the t-channel.
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The lowest order differential cross section then reads

15O o5 ‘MLOW(kA)gZ(kB) —>¢(p1)15(p2))‘2

a0 64725 O(Vs —2M).

A remarkable feature of this differential cross section originates from the s-channel contri-

2 i.e. when the intermediate ¢-particle goes on-shell.

bution: it has a singularity at s = m
This can occur if m > 2M, corresponding to an unstable ¢-particle (see part a). For this
reason we kept the ie imaginary part in the propagator. Actually, when treated correctly this
instability adds a finite imaginary piece to the denominator, resulting in a (finite) resonance.
The occurrence of such resonances allows to discover new particles! A beautiful example of
a recent discovery via a resonance is the discovery of the Higgs boson in 2012 (see attached
figure). In the ’90s of the last century the resonance of the Z-boson was studied in great
detail at LEP (CERN, Geneva) and SLC (SLAC, Stanford). For instance this has led to the

conclusion that there are three generations of light neutrinos (see attached plots).
By the way, from iMLO(q,b(kA)@Z_J(kB) — (p1)Y(p2)) it trivially follows that (see also Ex. 10)

(9/2M)* iy

V'z/_)'dj(r) = Vyy(r) = - At

)

which is a consequence of the invariance of the scalar Yukawa theory under crossing.
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Higgs resonance
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Number of light neutrino generations: N, = 2.984 + 0.008
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