
Quantum Field Theory: Tutorial #7 Solutions

Solution 9:
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To mark this in Feynman diagrams an arrow will be drawn on  =

�

 -lines, representing the di-

retion of partile number ow:  -partiles ow along the arrow,

�

 -partiles =  -antipartiles

against the arrow.

In momentum spae : these extra Feynman rules all provide a trivial fator 1.
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Note that the inoming momentum k

B

of the antipartile is de�ned in the opposite diretion

of the arrow! This is typial for the arrow onvention for antipartiles .
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The lowest-order sattering amplitude iM
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This amplitude an be obtained from the �rst one by means of rossing , i.e. hanging the mo-

menta aording to k

B
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in order to swith from partiles to antipartiles in

the opposite reation state.

(d) The lowest-order sattering amplitude iM
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initial state with partile number 2 annot satter into a �nal state with partile number 0

(f. exerise 8). In the Feynman diagrams this manifests itself by the absene of a onsistent

(ontinuous) ow for the partile number in this partiular proess.

Solution 11:
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where

R

d
 = 4� has been used.
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Aording to exerise 9() the matrix element iM
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where the diagram on the left is the t-hannel diagram and the one on the right the u-hannel.
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therefore also the di�erential ross setion are symmetri under os �! � os � = os(���) .

Furthermore, note that the usual in�nitesimal imaginary parts have been skipped in the

above-given propagators. Sine t ; u < M

2

; these propagators an never beome on-shell and

as suh the in�nitesimal imaginary parts are obsolete.

The lowest order di�erential ross setion then reads
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where the diagram on the left is the s-hannel diagram and the one on the right the t-hannel.
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The lowest order di�erential ross setion then reads
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A remarkable feature of this di�erential ross setion originates from the s-hannel ontri-

bution: it has a singularity at s = m

2

, i.e. when the intermediate �-partile goes on-shell.

This an our if m > 2M , orresponding to an unstable �-partile (see part a). For this

reason we kept the i� imaginary part in the propagator. Atually, when treated orretly this

instability adds a �nite imaginary piee to the denominator, resulting in a (�nite) resonane.

The ourrene of suh resonanes allows to disover new partiles! A beautiful example of

a reent disovery via a resonane is the disovery of the Higgs boson in 2012 (see attahed

�gure). In the '90s of the last entury the resonane of the Z-boson was studied in great

detail at LEP (CERN, Geneva) and SLC (SLAC, Stanford). For instane this has led to the

onlusion that there are three generations of light neutrinos (see attahed plots).
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whih is a onsequene of the invariane of the salar Yukawa theory under rossing.
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Number of light neutrino generations: N⌫ = 2.984 ± 0.008

Page 7 of 7


