Quantum Field Theory: Tutorial #9 Solutions

Solution 12:

(a) The only Feynman diagram at lowest order is given by
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where the factor % is due to the fact that we have to restrict the integration to the inequivalent

configurations of the identical particles (see page 65 in the lecture notes).

(b) The three diagrams that contribute now are:
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with /1 the loop momentum and P the total initial state momentum. These diagrams are
exactly the same, except that the momenta have been interchanged. Examining the combi-
nations of momenta closely, you can see that (not surprisingly) the combinations yield the
Mandelstam variables (e.g. P? = s). So at one loop we have (if you do not see it, work it out
explicitly):

iMh toop = £(5)+ f(8) + f(u)

where s, t and u are the Mandelstam variables and f is a function that we will determine

from the first diagram (the s-channel diagram). For massless particles the first diagram yields

1 [d, A2
fls) = 5/(27r)4 [62 + i€][(61 + P)2 + ie]

We can rewrite this integral using a Feynman parameter o and shifting the integration vari-
able:

fs) = 27r / da /d%l (6, + P)? (1 — )2 + ie]?

da d41z

A +1€]?
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with
Ay = a?s—as < 0.

For the ¢t and u channels, we have similar quantities A; and A,. However, these are always

positive (or 0) because t,u < 0, whereas s > 0. A Wick-rotation of the integral yields

f(s) = i/lda/d‘le L _ /da/ ez
—202m)t J, PIE + 8, -2 32m2 2+ A, —ie? +A —ze]’z‘

Now introducing the cut-off A2, we can calculate the integral:

i\2 o 03+ As —ie— Ay +ic
fls) = 3272 /da/ dlp (02, + Ay — ie]?

it A — e =N
= da |log(l% + Ay — i -
327T2/0 a[og(E—l— o U+ A —iel g
E
i}\2 1 )
= —— do |log(A?) — log(Ag —i€) — 1
332 /0 a [log(A?) — log(As —ie) — 1] ,

where in the last step we used that A2 > s. Now the sign of A matters. For the ¢ and u
channel, A > 0 and the imaginary part in the logarithm does not matter. However, A, < 0,

so the logarithm picks up a —im term. Taking everything together gives

i 2 1
Ml iy = g [ do[310(A%) —3 ~ Iog(A, — ie) — log(A1) ~ log(A.)]
i 2 1
= 3;2 /0 do: [31og(A%) — 3 —log(a[l — a]s) + i —log(~ o[l — a]t) — log(~ all — alu)]
iz
=~ 3912 3 log(A?) + 3 — log(s) — log(—t) — log(—u) + ir] .

(c) From (b) it follows that 2Im(M) = %, which is exactly the answer of (a). This imaginary
part is caused by the imaginary ¢e terms in the propagators and not by the imaginary factors

occurring in the vertices.
(d) In order to see the explicit link to on-shell intermediate particles, we replace f(s) by

)\2

2/ N[ 2ind(2)] [-2im8( + 26, P+ P)] = d* 6(6) (6 +26-P+ P?) .

(2m)*

Since the delta-functions and integration measure are Lorentz invariant, we can calculate this
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integral in the CM frame of the collision where P# = (E¢y,0) and P? =s = E2,:

A2 A2
T3 d*0y 6(63) (63 + 26,-P + P?) = _W/d%l 8(63)6(20 Bou + EZy)
A2 . . A2 o 8(Bon/2 — |01]) A2
= ——— [ diy §(E%, /4 — 12 = — /d(Z 02 2 = -
ermey | A ) = — i [amAR e .

The t- and u-channel one-loop diagrams vanish upon putting the intermediate particles on-
shell. In that case both delta-function requirements cannot be satisfied simultaneously since
that would imply the existence of a CM frame of the two on-shell intermediate particles,

which in turn would cause ¢ or u to be positive rather than negative.

(e) Apart from a minus sign this coincides with the imaginary part derived in part (c).
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