
Quantum Field Theory: Tutorial #9 Solutions

Solution 12:

(a) The only Feynman diagram at lowest order is given by
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where the fator

1

2

is due to the fat that we have to restrit the integration to the inequivalent

on�gurations of the idential partiles (see page 64 in the leture notes).

(b) The three diagrams that ontribute now are:
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the loop momentum and P the total initial state momentum. These diagrams are

exatly the same, exept that the momenta have been interhanged. Examining the ombi-

nations of momenta losely, you an see that (not surprisingly) the ombinations yield the

Mandelstam variables (e.g. P

2

= s). So at one loop we have (if you do not see it, work it out

expliitly):

iMj
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= f(s) + f(t) + f(u) ;

where s, t and u are the Mandelstam variables and f is a funtion that we will determine

from the �rst diagram (the s-hannel diagram). For massless partiles the �rst diagram yields
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We an rewrite this integral using a Feynman parameter � and shifting the integration vari-

able:
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with
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s

= �
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s� �s � 0 :

For the t and u hannels, we have similar quantities �

t

and �

u

. However, these are always

positive (or 0) beause t ; u � 0, whereas s � 0. A Wik-rotation of the integral yields
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Now introduing the ut-o� �

2

, we an alulate the integral:
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where in the last step we used that �

2

� s. Now the sign of � matters. For the t and u

hannel, � � 0 and the imaginary part in the logarithm does not matter. However, �

s

� 0,

so the logarithm piks up a � i� term. Taking everything together gives
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() From (b) it follows that 2 Im(M) =

�

2

16�

, whih is exatly the answer of (a). This imaginary

part is aused by the imaginary i� terms in the propagators and not by the imaginary fators

ourring in the verties.

(d) In order to see the expliit link to on-shell intermediate partiles, we replae f(s) by
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Sine the delta-funtions and integration measure are Lorentz invariant, we an alulate this
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integral in the CM frame of the ollision where P
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The t- and u-hannel one-loop diagrams vanish upon putting the intermediate partiles on-

shell. In that ase both delta-funtion requirements annot be satis�ed simultaneously sine

that would imply the existene of a CM frame of the two on-shell intermediate partiles,

whih in turn would ause t or u to be positive rather than negative.

(e) Apart from a minus sign this oinides with the imaginary part derived in part ().
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