
Quantum Field Theory: Summary of the mid-term dis
ussion on for
e 
arriers

Dis
ussion summary:

(a) Non-relativisti
 Coulomb potential : in analogy to exer
ise 9(
) the lowest-order ampli-

tude iM
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for parti
le-parti
le s
attering in s
alar QED reads
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whereas for antiparti
le-parti
le s
attering iM
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:

The latter amplitude is obtained from the former one by means of 
rossing, i.e. k

B

$ �p

2

.

In the non-relativisti
 limit one obtains the approximations
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sin
e in the non-relativisti
 limit E � m � j~p j . The initial-state parti
les have the same

mass as the �nal-state parti
les, hen
e (k
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For antiparti
le-parti
le s
attering it follows that:
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[ having the opposite sign due to 
rossing! ℄.

Hen
e, numerator (i) is supressed byO(

~
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) 
ompared to numerator (ii). This suppression

is further enhan
ed by the two denominators: (k
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ond

term therefore dominates the matrix element:
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Comparing these two equations for the matrix elements in the non-relativisti
 limit to the

one obtained for the s
alar Yukawa theory on page 52 of the le
ture notes, one 
on
ludes that

we have to substitute g by 2me and repla
e the mass of the ex
hanged virtual parti
le by 0

(note that the mass of the initial/�nal-state parti
les in the le
ture notes is given byM , while

in this exer
ise it is given by m). In this way we obtain the well-known Coulomb potential

V
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In (s
alar) QED the intera
tion between parti
les is repulsive, whi
h is 
aused by the � �

��

propagator fa
tor, whereas the intera
tion between parti
les and antiparti
les is attra
tive,
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whi
h is 
aused by 
rossing. The bosoni
 parti
le being ex
hanged here as for
e 
arrier (pho-

ton) is a spin-1 parti
le. Spin-1 ex
hange allows both attra
tive and repulsive intera
tions!

With respe
t to a spin-1-ex
hange intera
tion, parti
les and antiparti
les have opposite 
harge:

equal 
harges repel ea
h other, opposite 
harges attra
t ea
h other.

Remark: as you 
an see from the Feynman rule involving one photon and two

s
alar parti
les, the photon 
ouples to a 
onserved 
harge 
urrent with one Lorentz

index �. Upon 
ontra
tion with the photon momentum (p�p

0

)

�

one indeed obtains

�ie (p

2

� p

0 2

) = 0 for on-shell s
alar parti
les, as required for a 
onserved 
urrent.

(b) Next we 
onsider the 
oupling between the spin-2 graviton and s
alar parti
les. In

this 
ase the graviton 
ouples to the 
onserved energy-momentum tensor for the

s
alar matter, whi
h has two Lorentz indi
es � and �. As 
an be 
he
ked, 
ontra
ting

the given Feynman rule by either (p� p

0

)

�

or (p� p

0

)

�

indeed yields 0 for on-shell

s
alar parti
les.

Non-relativisti
 gravitational potential : the intera
tions mediated by spin-2 gravitons


an now be analyzed in the same way as we previously did for s
alar QED. For parti
le-parti
le

s
attering the lowest-order amplitude iM
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In the non-relativisti
 limit q �r � m

2

for all 
ontra
tions involving the initial- and �nal-state

momenta. Thus to leading order the amplitude simpli�es 
onsiderably:
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Therefore, by analogy to the Yukawa 
ase the asso
iated non-relativisti
 potential is given by

V
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r

;

i.e. Newton's gravitational potential.

The parti
le-antiparti
le s
attering amplitude is again obtained by 
rossing:
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The se
ond term is suppressed with respe
t to the �rst one, sin
e (k
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+ k
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in the s
alar QED 
ase. So, just like in the 
ase of Yukawa spin-0-ex
hange the relevant

vertex is invariant under 
rossing, and the parti
le-antiparti
le amplitude is the same as for
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parti
le-parti
le s
attering. Hen
e, the non-relativisti
 potentials

V
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2

r

are identi
al and attra
tive, as expe
ted for a gravitational potential.

To summarize: for for
e 
arriers with even spin the relevant intera
tion vertex is a tensor

with an even number of Lorentz indi
es. If the parti
les that feel the for
e are s
alar,

this implies that the vertex is a sum of produ
ts of an even number of momenta. Su
h a

vertex is invariant under 
rossing of the momenta at that vertex (swit
hing from parti
les to

antiparti
les) and the 
orresponding intera
tion is universally attra
tive. For for
e 
arriers

with odd spin, the number of indi
es/momenta of the intera
tion vertex is odd, and one

obtains a repulsive/attra
tive for
e for parti
le-parti
le/antiparti
le-parti
le intera
tions.

Justi�
ation for the given graviton { s
alar intera
tion vertex : for the free 
omplex s
alar

�eld the energy-momentum tensor 
an be 
al
ulated straightforwardly to be (see pages 8 and 12 of

the le
ture notes):
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and the hermitean 
onjugate for
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le momentum states are generi
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~
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where the last term equals 0 be
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0
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Putting everything together:
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For antiparti
le states the 
al
ulation 
an be performed in an analogous way.
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Rules of thumb for derivative 
ouplings : the previous dis
ussion 
an be summarized in terms

of momentum-spa
e Feynman rules for intera
tions involving �elds with derivatives a
ting on it. For

an in
oming parti
le with momentum q , the �eld derivative �

�

^

� yields a vertex fa
tor �iq

�

. For an

outgoing parti
le with momentum q , the �eld derivative �

�

^

�

y

yields a vertex fa
tor +iq

�

. Imple-

menting this in the above-given graviton { s
alar intera
tion instantly reprodu
es the momentum-

spa
e Feynman rule for the graviton { s
alar intera
tion vertex.

In the 
ase of s
alar QED something similar happens. As will be explained in 
hapter 5, the photon

�eld will 
ouple to the 
onserved Noether 
urrent resulting from the global U(1) gauge symmetry

of the free theory that des
ribes the 
onsidered 
harged parti
les (whi
h are s
alar in our 
ase) .

On page 12 of the le
ture notes the 
onserved 
urrent for the 
omplex Klein{Gordon theory was

found to be

i
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whi
h would translate into a momentum-spa
e vertex fa
tor �(p + p

0

)

�

for an in
oming parti
le

with momentum p and an outgoing parti
le with momentum p

0

. Up to a 
harge proportionality

fa
tor this indeed 
oin
ides with the advertised momentum-spa
e vertex rule for s
alar QED.
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